简单的三角函数公式推导,用了级数。

欧拉公式巧妙地将几个数学常数链接在了一起,架起了一座跨越实数和复数的大桥。

讲实话,复数在很多时候简化了复杂的三角函数运算。

本篇用来测试主题性能,和显示效果。

章节 内容
欧拉公式的推导 从麦克劳林级数到欧拉公式
复数与和角公式 用欧拉公式从复数角度推导和角公式
容易理解的积化和差 积化和差的推导
积化和差 积化和差快速方法
和差化积 和差化积快速方法

欧拉公式的推导

用麦克劳林级数即可:

cos(x)=n=0+(1)nxn(2n+1)!=1x22!+x44!+...+(1)nx2n(2n)!+...sin(x)=n=0+(1)nxn(2n+1)!=xx33!+x55!+...+(1)nx2n+1(2n+1)!+...\begin{aligned} \cos(x) &= \sum\limits^{+\infty}_{n=0} \frac{(-1)^{n}x^{n}}{(2n+1)!} \\&= 1 - \frac{x^{2}}{2!}+\frac{x^{4}}{4!}+...+\frac{(-1)^{n}x^{2n}}{(2n)!}+... \\ \sin(x) &= \sum\limits^{+\infty}_{n=0} \frac{(-1)^{n}x^{n}}{(2n+1)!} \\&= x - \frac{x^{3}}{3!}+\frac{x^{5}}{5!}+...+\frac{(-1)^{n}x^{2n+1}}{(2n+1)!}+... \\ \end{aligned}

因此对 exie^{x i} 进行展开,就有:

ex=n=0+(ix)nn!=1+ix+(ix)22!+(ix)33!+...+(ix)2n2n!+(ix)2n+1(2n+1)!+...=1+ixx22!i(x)33!+...(1)nx2n2n!i(1)nx2n+1(2n+1)!+...=(1x22!+x44!+...+(1)nx2n(2n)!+...)+i(xx33!+x55!+...+(1)nx2n+1(2n+1)!+...)=n=0+(1)nxn(2n+1)!+in=0+(1)nxn(2n+1)!=cos(x)+isin(x)\begin{aligned} e^{x} &= \sum\limits^{+\infty}_{n=0} \frac{(ix)^{n}}{n!} \\&= 1+ ix + \frac{(ix)^{2}}{2!} + \frac{(ix)^{3}}{3!} + ...+\frac{(ix)^{2n}}{2n!}+\frac{(ix)^{2n+1}}{(2n+1)!} +... \\&= 1+ ix - \frac{x^{2}}{2!} - \frac{i(x)^{3}}{3!} + ...-\frac{(-1)^{n}x^{2n}}{2n!}-\frac{i(-1)^{n}x^{2n+1}}{(2n+1)!} +... \\&= \left(1 - \frac{x^{2}}{2!}+\frac{x^{4}}{4!}+...+\frac{(-1)^{n}x^{2n}}{(2n)!}+...\right) + i\left(x - \frac{x^{3}}{3!}+\frac{x^{5}}{5!}+...+\frac{(-1)^{n}x^{2n+1}}{(2n+1)!}+...\right) \\&=\sum\limits^{+\infty}_{n=0} \frac{(-1)^{n}x^{n}}{(2n+1)!}+i \sum\limits^{+\infty}_{n=0} \frac{(-1)^{n}x^{n}}{(2n+1)!} \\&= \cos(x) + i\sin(x) \end{aligned}

注意这里的 i=1,i2=1,i3=1,i4=1i=\sqrt{-1},i^{2}=-1,i^{3}=-\sqrt{-1},i^{4}=1 因此系数才能变换为 (1)n(-1)^{n}

复数与和角公式

由于数学定理都是自闭合的,不会出现证出一团东西的情况,可以用正余弦函数倍角公式来推导和差化积,积化和差,也一定可以用欧拉公式来推导。

eix=cos(x)+isin(x)e^{ix} = \cos(x)+i\sin(x)

假定现在有两个角 α\alphaβ\beta 于是就能有:

eiα=cos(α)+isin(α)eiβ=cos(β)+isin(β)\begin{aligned} e^{i\alpha} &= \cos(\alpha) + i\sin(\alpha) \\ e^{i\beta} &= \cos(\beta) + i\sin(\beta) \\ \end{aligned}

于是就有:

eiαeiβ=[cos(α)+isin(α)][cos(β)+isin(β)]ei(α+β)=cos(α+β)+isin(α+β)=[cos(α)cos(β)sin(α)sin(β)]+i[cos(α)sin(β)+sin(α)cos(β)]\begin{aligned} e^{i\alpha} \cdot e^{i\beta} &= [ \cos(\alpha) + i\sin(\alpha)] \cdot [\cos(\beta) + i\sin(\beta)] \\ e^{i(\alpha+\beta)} &= \\ \cos(\alpha+\beta)+i\sin(\alpha+\beta) &= [\cos(\alpha)\cos(\beta)-\sin(\alpha)\sin(\beta)]+ i[\cos(\alpha)\sin(\beta)+\sin(\alpha)\cos(\beta)] \end{aligned}

根据复数性质,实部对实部,虚部对虚部,就必然有:

cos(α+β)=cos(α)cos(β)sin(α)sin(β)sin(α+β)=cos(α)sin(β)+sin(α)cos(β)\begin{align} \cos(\alpha+\beta) &= \cos(\alpha)\cos(\beta)-\sin(\alpha)\sin(\beta) \\ \sin(\alpha+\beta) &= \cos(\alpha)\sin(\beta)+\sin(\alpha)\cos(\beta)\\ \end{align}

得到了和差角公式。

容易理解的积化和差

稍微变形一下就能有:

cos(α+β)=cos(α)cos(β)sin(α)sin(β)cos(αβ)=cos(α)cos(β)+sin(α)sin(β)\begin{aligned} \cos(\alpha+\beta) &= \cos(\alpha)\cos(\beta)-\sin(\alpha)\sin(\beta)\\ \cos(\alpha-\beta) &= \cos(\alpha)\cos(\beta)+\sin(\alpha)\sin(\beta) \end{aligned}

两式求和有:

cos(α+β)+cos(αβ)=2cos(α)cos(β)cos(α)cos(β)=cos(α+β)+cos(αβ)2 \begin{aligned} \cos(\alpha+\beta) + \cos(\alpha-\beta) &= 2\cos(\alpha)\cos(\beta)\\ \cos(\alpha)\cos(\beta) &=\frac{\cos(\alpha+\beta) + \cos(\alpha-\beta)}{2} \end{aligned}

两式做差有:

cos(αβ)cos(α+β)=2sin(α)sin(β)sin(α)sin(β)=cos(αβ)cos(α+β)2\begin{aligned} \cos(\alpha-\beta) - \cos(\alpha+\beta) &= 2\sin(\alpha)\sin(\beta)\\ \sin(\alpha)\sin(\beta) &= \frac{\cos(\alpha-\beta) - \cos(\alpha+\beta)}{2} \end{aligned}

根据对称性, sin\sin 的形式也就有:

sin(α+β)=cos(α)sin(β)+sin(α)cos(β)sin(αβ)=cos(α)sin(β)+sin(α)cos(β)\begin{aligned} \sin(\alpha+\beta) &= \cos(\alpha)\sin(\beta)+\sin(\alpha)\cos(\beta)\\ \sin(\alpha-\beta) &= -\cos(\alpha)\sin(\beta)+\sin(\alpha)\cos(\beta)\\ \end{aligned}

两式求和有:

sin(α+β)+sin(αβ)=2sin(α)cos(β)sin(α)cos(β)=sin(α+β)+sin(αβ)2\begin{aligned} \sin(\alpha+\beta) + \sin(\alpha-\beta) &= 2\sin(\alpha)\cos(\beta)\\ \sin(\alpha)\cos(\beta) &=\frac{\sin(\alpha+\beta) + \sin(\alpha-\beta)}{2} \end{aligned}

两式做差有:

sin(α+β)sin(αβ)=2cos(α)sin(β)cos(α)sin(β)=sin(α+β)sin(αβ)2\begin{align} \sin(\alpha+\beta) - \sin(\alpha-\beta) &= 2\cos(\alpha)\sin(\beta)\\ \cos(\alpha)\sin(\beta) &= \frac{\sin(\alpha+\beta) - \sin(\alpha-\beta)}{2}\\ \end{align}

也就是有了:

cos(α)cos(β)=cos(α+β)+cos(αβ)2sin(α)sin(β)=cos(αβ)cos(α+β)2sin(α)cos(β)=sin(α+β)+sin(αβ)2cos(α)sin(β)=sin(αβ)sin(α+β)2\begin{aligned} \cos(\alpha)\cos(\beta) &=\frac{\cos(\alpha+\beta) + \cos(\alpha-\beta)}{2} \\ \sin(\alpha)\sin(\beta) &= \frac{\cos(\alpha-\beta) - \cos(\alpha+\beta)}{2} \\ \sin(\alpha)\cos(\beta) &=\frac{\sin(\alpha+\beta) + \sin(\alpha-\beta)}{2} \\ \cos(\alpha)\sin(\beta) &= -\frac{\sin(\alpha-\beta) - \sin(\alpha+\beta)}{2}\\ \end{aligned}

积化和差

和角公式有更快的求法。现假设 xxyy 有:

{a=x+yb=xy{x=a+b2y=ab2\begin{cases} a = x + y \\ b = x - y \end{cases} \Rightarrow \begin{cases} x = \frac{a+b}{2} \\ y = \frac{a-b}{2} \end{cases}

也就是对于:

cos(α+β)a=cos(α)cos(β)xsin(α)sin(β)ycos(αβ)b=cos(α)cos(β)x+sin(α)sin(β)ysin(α+β)a=cos(α)sin(β)y+sin(α)cos(β)xsin(αβ)b=cos(α)sin(β)y+sin(α)cos(β)x\begin{aligned} \underbrace{\cos(\alpha+\beta)}_{a} &= \underbrace{\cos(\alpha)\cos(\beta)}_{x}-\underbrace{\sin(\alpha)\sin(\beta)}_{y} \\ \underbrace{\cos(\alpha-\beta)}_{b} &= \underbrace{\cos(\alpha)\cos(\beta)}_{x}+\underbrace{\sin(\alpha)\sin(\beta)}_{y} \\ \\ \underbrace{\sin(\alpha+\beta)}_{a} &= \underbrace{\cos(\alpha)\sin(\beta)}_{y}+ \underbrace{\sin(\alpha)\cos(\beta)}_{x} \\ \underbrace{\sin(\alpha-\beta)}_{b} &= -\underbrace{\cos(\alpha)\sin(\beta)}_{y}+ \underbrace{\sin(\alpha)\cos(\beta)}_{x} \end{aligned}

可以直接得到:

cos(α)cos(β)=cos(α+β)+cos(αβ)2sin(α)sin(β)=cos(αβ)cos(α+β)2sin(α)cos(β)=sin(αβ)+sin(α+β)2cos(α)sin(β)=sin(α+β)sin(αβ)2\begin{aligned} \cos(\alpha)\cos(\beta) &=\frac{\cos(\alpha+\beta) + \cos(\alpha-\beta)}{2} \\ \sin(\alpha)\sin(\beta) &= \frac{\cos(\alpha-\beta) - \cos(\alpha+\beta)}{2} \\ \sin(\alpha)\cos(\beta) &=\frac{\sin(\alpha-\beta) + \sin(\alpha+\beta)}{2} \\ \cos(\alpha)\sin(\beta) &= \frac{\sin(\alpha+\beta) - \sin(\alpha-\beta)}{2}\\ \end{aligned}

和差化积

同样对于积化和差,还是一样的变形式,不过为了直观,换了下符号:

{α=a+bβ=ab{α=a+b2β=ab2\begin{cases} \alpha = a + b \\ \beta = a - b \end{cases} \Rightarrow \begin{cases} \alpha = \frac{a+b}{2} \\ \beta = \frac{a-b}{2} \end{cases}

直接变形就能有:

cos(a+b2)cos(ab2)=cos(a)+cos(b)2sin(a+b2)sin(ab2)=cos(b)cos(a)2sin(a+b2)cos(ab2)=sin(b)+sin(a)2cos(a+b2)sin(ab2)=sin(a)sin(b)2\begin{aligned} \cos(\frac{a+b}{2})\cos(\frac{a-b}{2}) &=\frac{\cos(a) + \cos(b)}{2} \\ \sin(\frac{a+b}{2})\sin(\frac{a-b}{2}) &= \frac{\cos(b) - \cos(a)}{2} \\ \sin(\frac{a+b}{2})\cos(\frac{a-b}{2}) &=\frac{\sin(b) + \sin(a)}{2} \\ \cos(\frac{a+b}{2})\sin(\frac{a-b}{2}) &= \frac{\sin(a) - \sin(b)}{2}\\ \end{aligned}

稍微挪一下,换个符号,就有了和差化积的公式:

cos(α)+cos(β)=2cos(α+β2)cos(αβ2)cos(β)cos(α)=2sin(α+β2)sin(αβ2)sin(β)+sin(α)=2sin(α+β2)cos(αβ2)sin(α)sin(β)=2cos(α+β2)sin(αβ2)\begin{aligned} \cos(\alpha) + \cos(\beta) &= 2\cos(\frac{\alpha+\beta}{2})\cos(\frac{\alpha-\beta}{2}) \\ \cos(\beta) - \cos(\alpha) &= 2\sin(\frac{\alpha+\beta}{2})\sin(\frac{\alpha-\beta}{2}) \\ \sin(\beta) + \sin(\alpha) &= 2\sin(\frac{\alpha+\beta}{2})\cos(\frac{\alpha-\beta}{2}) \\ \sin(\alpha) - \sin(\beta) &= 2\cos(\frac{\alpha+\beta}{2})\sin(\frac{\alpha-\beta}{2}) \\ \end{aligned}

参考文献

[1] Г.М.菲赫金哥尔茨.数学分析原理.北京:高等教育出版社,2013
[2] 吉米多维奇.吉米多维奇数学分析习题集.北京:高等教育出版社,2010
[3] 沐定夷,谢惠民.吉米多维奇数学分析习题集学习指引.北京:高等教育出版社,2010